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Abstract 
In this paper, we introduce a new generalized derivative (GD) for nonsmooth functions 

which is based on optimization. This type of GD is an extension of the concept of the usual 

derivative of smooth functions and is defined as an optimal solution of a special 

optimization problem. Here, the optimization problem is approximated with a linear 

programming problem by solving of which, we can obtain this GD as simple as other 

approaches. This GD is utilized for some nonsmooth functions and is shown in some 

examples the efficiency of the proposed approach. 

 

Keywords: Nonsmooth functions, Generalized derivative, Optimization, Linear programming. 

1. Introduction 

Nonsmooth analysis is a branch of mathematics proposed by Clarke in 1973 (see [3,4] ). In 

nonsmooth analysis, we deal with nonsmooth functions, the sets with nonsmooth boundaries, and 

the set valued mappings. The nonsmooth functions are not differentiable in at least one point of 

their domain. The researchers endeavored to generalize the derivative of these functions in 

nonsmoothness points (see Jeyakumar [12]). The discrete and continuous-time optimization 

problems are the most important ones which need generalized derivatives (GDs) of nonsmooth 

functions, since the GDs in these problems give us the optimal solutions of these problems. Thus, 

not only we present a GD, but we must also be able to use it to obtain the optimal solution of the 

optimization problems. Up to now, many generalized derivatives for nonsmooth functions have 

been presented and in this section, we are going to make the reader familiar with one of the most 

well known GDs, that is Clarke’s GDs. Note that, by using Clarke’s GDs and other GDs, necessary 

and sufficient conditions for optimality in optimization problems are presented, but these conditions 

are only used to test the optimal solution and by these, we usually cannot obtain the optimal 

solution (see [12,17]).  

In this section, suppose that : n  is a real-valued function. We know that the partial 

derivative of the smooth function (.)  with respect to the thj  component of nx  is denoted by 

( )

j

x

x
and defined as 



( ) ( )
lim j

tj

x te x

x t
 where je  is the unit thj coordinate direction in 

n . Moreover, the gradient of the function (.)  at the point x  is denoted by ( )x  and defined as
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( ) ( )
( ) ( ,..., )

n

x x
x

x x
 .  But, for nonsmooth functions, the Clarke generalized derivatives are 

defined as follows. Suppose that (.)  is locally Lipschitz function at point nx  , that is, there 

exists a neighbourhoodB of x and a positive M such that  

  
( ) ( )x y M x y ,    .y B  

The Clarke directional derivative of the function (.)  at x  in the direction unit vector nu  is 

defined as follows: 





( ) ( )
( ; ) lim

t
y x

y tu y
x u

t
. 

Moreover, the Clarke subdifferential of (.)  at x is defined by 

 

( ) ( ,..., ) : . ( ; ), for ( ,..., )C n n
n nx u x u u u u

 
. 

Indeed, the Clarke generalized gradient of function (.)at x  is defined by 

( ) lim ( ) :C
i ix xi

x co x x  

where  is the set of points in neighbourhood B  at which (.)  is differentiable, and ( )co A  is the 

convex hall of set nA . 

Many other generalized derivatives have been defined as needed in various other situations. 

Several of more well known GDs are collected and listed by Jeyakumar [12], including the 

Mordokhovich subgradient and coderivative [16,17], the Warga derivative containers [20,21], the 

Ioff  prederivative and approximate subdifferentials [10,11], the Gowda and Ravindran H-

differentials [8], the Clarke-Rockafellar subdifferential [18], the Demyanov-Robinov quasi-

differentials [7]. Note that the majority of the GDs are examples of Jeyacumar’s pseudo-jacobians 

(see chapter 1 of Jeyakumar [12]). Moreover, the semi-smooth Newton derivative is defined for 

nonsmooth functions (see [6,9,13,14,22]) which is near to the Frechet and strict (Hadamard) 

derivatives. 

Each of the above the above-mentioned GDs of nonsmooth functions, has some conditions 

and restrictions. Some of these conditions and restrictions are as follows: 

i) For obtaining GDs of nonsmooth function (.) : n  at point nx , function (.)must 

usually be continuous and locally Lipschitz at point x . 

ii) The GDs of nonsmooth function (.) : n  are presented in a given and known point 

nx . 

iii) Usually, the concept of lim, limsup or liminf is used to define GDs of nonsmooth function 

(.) : n  at point nx (see chapter 1 of Jeyakumar [12] ). 

iv) The set of smoothness and nonsmoothness points for nonsmooth function (.) : n must be 

known.  

Thus, it is important that we introduce a practical and applicable GD for nonsmooth integrable 

functions that avoids these restricting conditions. For this porpuse, Kamyad et al. proposed a useful 

and practical GD for nonsmooth functions (see [15]). We now present a different approach and 

definition for the GD of nonsmooth functions, which is based on a special optimization problem. 

Here, we approximate the optimization problem by a linear programming problem.  
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The structure of this paper is as follows. In Section 2, we state some theorems and introduce 

an optimization problem for GD of one-variable nonsmooth integrable functions. In particular, we 

obtain a linear programming (LP) problem corresponding to the above-mentioned optimization 

problem the solution of which is an approximation to the GD. In Section 3, using the GD of the 

one-variable nonsmooth integrable functions, we generalize this concept of GD to multi-variable 

nonsmooth integrable functions. In Section 4, we illustrate the GD of some nonsmooth functions by 

using this approach. Finally, the conclusions in Section 5 include several applications where the GD 

could be utilized.  

2. Generalized derivative of nonsmooth one-variable functions  
We introduce the GD of one-variable nonsmooth integrable functions :f . Assume that 

( )C
 
is the space of continuous differentiable functions on set , and ( )N s is the neighbourhood 

of s
 
with the radius . For facility and without loss of generality, we assume that  ( , ) and 

initiate with the following lemma: 

 

Lemma 2.1: Let  : ( , ) be a function such that lim ( )
x c

x L  where L and  ( , )c . 

Then for all ,K K L  there exists c  such that ( ) ( )x L x K  for all 

( , )\{ }c cx c c c . 

Proof: Let 





L K
. Since lim ( )

x c
x L , there is c  such that for all ( ) \ { }

c
x N c c  

we have  

                             


( )x L .                                                            (1) 

In addition,  

           

( ) ( )

( )

x K x K L L

L K x L
 

Thus by (1) 

                                    





( )

( ) .

L K
x K L K

L K

x L

  

Proposition 2.2: Let   (.) [ , ]f C
 
and m . Then there exists  such that for all arbitrary


( , )i
i i

s
m m

 and ig ,  , ,...,i m  we have 

                            

( ) ( ) ( ) ( ) ( ) ( ) ( )

s si i

i i i i i i
s si i

f x f s x s f s dx f x f s x s g dx                (2) 

Proof:  By lemma 2.1, since 
( ) ( )

( ) lim i
i x s ii

f x f s
f s

x s
,  , ,...,i m , there is si

 such that for 

all ( ) \ { }i isi
x N s s and ( )i ig f s we have  
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( ) ( ) ( ) ( )
( )i i
i i

i i

f x f s f x f s
f s g

x s x s
,    

                                     ( ) ( ) ( ) ( ) ( ) ( ) ( )i i i i i if x f s x s f s f x f s x s g ,                               (3) 

Suppose that  min : , ,...,si
m . Thus ( , ) ( )\ { }i i i isi

s s N s s  for  , ,...,i m  and by (3) 

we have:   

                            ( ) ( ) ( ) ( ) ( ) ( ) ( )

s si i

i i i i i i
s si i

f x f s x s f s dx f x f s x s g dx ,                (4)            

In addition, ( , ) ( )\ { }i i i isi
s s N s s and by (3) 

                           ( ) ( ) ( ) ( ) ( ) ( ) ( )

s si i

i i i i i i
s si i

f x f s x s f s dx f x f s x s g dx ,                 (5) 

Hence, using (4) and (5) for all  , ,...,i m  

        

( ) ( ) ( ) ( ) ( ) ( ) ( )

s si i

i i i i i i
s si i

f x f s x s f s dx f x f s x s g dx ,  ( )i ig f s .                      

Let  : [ , ]f  and let m  be a given large number. Also, assume that 


( , )i
i i

s
m m

, for 

 , ,...,i m  are arbitrary numbers. Define the following optimization problem:   

                               
 
( ,..., )

( ,..., ) ( ) ( ) ( )

sim

m i i ig gm i si

Minimize T g g f x f s x s g dx                     (6)      

where  is a sufficiently small given number and  is a subspace of m .  

Theorem 2.3 : Let  : [ , ]f
 

be an integrable function, m  is a given large number,  


( , )i
i i

s
m m

 for  , ,...,i m  are arbitrary numbers, and  is a sufficiently small number . 

The function : nT  defined in problem (6) is continuous.  

Proof: Let g  and   be given.  Define 

           

( ) ( ) ( ) ( ) ,
si

i i isi
g f x f s x s g dx g ,  , ,..., ,i m  

and assume that  
. Now, for all g , if  


g g then  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

s si i

i i i i i i i i
s si i
si

i i i i
si

g g f x f s x s g dx f x f s x s g dx

f x f s x s g f x f s x s g dx
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

.

si

i i i i
si
si

i i i i
si
si

i
si

f x f s x s g f x f s x s g dx

f x f s x s g f x f s x s g dx

x s g g dx

g g

 

Thus functions  (.), , ,...,i i m  are continuous and hence function 




( ,..., ) ( )
m

m i i
i

T g g g , 


( ,..., )mg g

 
is continuous.  

Theorem 2.4: Let   [ , ]f C and


( , )i
i i

s
m m

 for  , ,...,i m  be arbitrary numbers. Then there 

is sufficiently small number   such that the unique optimal solution of the optimization 

problem (6) is

( ),..., ( )ms sf f

 
where .m  

Proof: Let 

,..., m

mgg  be an arbitrary point and ( )i ig f s  for  , ,...,i m . By Proposition 

2.2 and relation (2), there is   such that   

                                                    
 
( ),..., ( ) ,...,m mT f s f s T g g .                                               (7) 

Thus 

 

,..., , ( )

( ),..., ( ) ,...,m mmg g g f sm i i

T f s f s Minimize T g g . 

On the other hand, 
( ),..., ( ) m

mf s f s .  Thus the point 

( ),..., ( )mf s f s is the unique optimal 

solution of the optimization problem (6) and  

          

 

,...,

( ),..., ( ) ,...,m mmg gm

T f s f s Minimize T g g . 

 

Theorem 2.5: Let  : [ , ]f be a nonsmooth integrable function, m  is a given large number,  


( , )i
i i

s
m m

 for  , ,...,i m  are arbitrary numbers, and  is a sufficiently small number. The 

optimization problem (6) has an optimal solution on [ , ]ml l  where l  is sufficiently big 

number. 

Proof: By Theorem 2.3, function : [ , ]mT l l , defined in problem (6), is continuous and so has  

a minimum point 

,..., mg g on compact set [ , ]ml l .  

Now, define the GD of a nonsmooth integrable function  : ( , )f . 



 The Electronic Journal of Mathematics and Technology, Volume 7, Number 1, ISSN 1933-2823 

67 

 

Definition 2.6: Let  : ( , )f  be an arbitrary integrable function, m  is a given large number 

and 


( , )i
i i

s
m m

 for  , ,...,i m  are arbitrary numbers. Moreover, suppose that

,..., mg g

 
is an 

optimal solution for the optimization problem (6). The GD of (.)f  on  ( , )  is denoted by (.)f  and 

defined as  ( ) , , ,...,i if s g i m . 

 

Remark 2.7: Considering the Theorem 2.4, if  : ( , )f  is a one-variable smooth function then 

( ) ( )i if s sf where    ( , ), , ,...,is i m . So in this case the GD is unique. Further, if (.)f  is a 

one-variable nonsmooth integrable function, then by theorem 2.5, the GD of (.)f  is an 

approximation for the derivative of (.)f . Moreover, we can show that there is [ , ]   such that 

( ) ( ) ( ) ( ).i i if s f s f s
 

where ( )if s and ( )if s  are the left and right derivative of function (.)f  in point is , respectively.  

Here, we are going to present an LP problem, corresponding to the optimization problem (6), for 

approximating the optimal solution of problem (6), i.e., the GD. For this, let   be a sufficiently 

small number.  Choose arbitrary points 


( , )i
i i

s
m m

 for  , ,...,i m  and suppose that 

( ) ( ) ( ) ( )i i i ix f x f s x s g  for all ( )ix N s . By the trapezoidal approximation 

               
( ) ( ) ( )

si

i i i i i
si

x dx x x                                                  (8) 

where 
i ix s  and 

i ix s  for all  , ,...,i m . We assume that ( )ij i ijx , ( )i if f s , 

( )ij ijf f x  for ,...,i m  and  ,j  . By approximation (8), optimization problem (6) is 

approximated with the following nonlinear optimization problem (see [1, 2]): 

                         

 


 
   

( ) ,

( , ,..., ) , , ,..., , , .

m

i i
i

ij ij i ij i i

m

Minimize

subject to f f x s g

g g g i m j

                          (9) 

 where ig  and ij  for  , ,...,i m  and  ,j  are decision variables of the problem.  

Lemma 2.8: Let the pair ( , )u v be the optimal solution of the following LP problem: 

                                                     
, ,

Minimize v

subject to v u v u u I
                     

where I  is a compact set. Then u  is the optimal solution of the following nonlinear problem:  

                                                                   
.

u I
Minimize u

 

Proof: It is obvious that ,v u v u and thus u v . Now, Assume there exists u I  

such that u u . Define, v u  then we have ,v u v u . Thus v u u v and so 

 v v which is a contradiction. □ 
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According to Lemma 2.8, the nonlinear problem (9) is equivalent to the following LP problem: 

                                            ( ) ,

( ) ,

( , ,..., ) , ,..., , , .

m

i i
i

ij ij i i ij i

ij ij i i ij i

m

Minimize

subject to x s g f f

x s g f f

g g g i m j

 


 
  

                       (10) 

By solving LP problem (10), we obtain optimal solutions ig  and ij  for  , ,...,i m  and  ,j . 

Thus we have ( )i if s g  for all  , ,...,i m .  

In the next section, we generalize the optimization problem (6) to the multi-variable nonsmooth 

functions.  

3. Generalized derivative of multi-variable nonsmooth functions  
In this section, we generalize the GD of nonsmooth one-variable functions to multi-variable 

nonsmooth functions. For this goal, assume that
 

 , ,...,q n is fixed. Here, we define the GD of 

(.) : nf  with respect to qx , i.e. thq  component of 

,..., nx x x . Without loss of 

generality, assume  [ , ]n  and define   as follows: 

     
   ( ,..., , ,..., ) : [ , ], , ,..., , .q q n jx x x x x j n j q  

Now, select N  as a sufficiently large number and divide  in to similar grids j  , 

 , ,..., nj N such that these grids cover . In the next step, consider arbitrary points 

 , , ,..., nj js j N  as 
  
( ,..., , ,..., )j j j j jq q n

s s s s s . Moreover, define the following vectors 

for all j js : 

                                
 ( ) ( ,..., , , ,..., ), ( , )j j j j jq q n

r t s s t s s t ,   , ,..., .nj N                   (11) 

Let m  be a given large number and
 
( ) ( ( ))f
j jh ft r t ,  [ , ]t  for  , ,..., nj N . Note 

that functions (.)fjh ,  , ,..., nj N  are one-variable. Assume that 


( , )i
i i

w
m m

,  , ,..i  ...,m  

are arbitrary numbers and define the optimization problem for  , ,..., :nj N  

                          
   

,...,
,..., ( ) ( ) ( )

wim
f f

m j j i i i
g g im wi

Minimize T g g h t h w t w g dt               (12)                                                     

where  is a sufficiently small number and is a subspace of m .  

Theorem 3.1: Let m  be a given large number,   ([ , ] )nf C  and ( ) ( ( ))f
j jh ft r t ,  [ , ]t  for 

 , ,..., nj N  where (.)jr  is satisfied in (11). Then there is a sufficiently small number   

such that the unique optimal solution of the optimization problem  

(12) for  , ,..., nj N , is 
( ),..., ( )f f
j j m

d d
w w

dt dt
h h  and we have 
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 ( ) ( ( )), , ,..., .f
j i j i

q

d f
w r w i m

dt x
h  

Proof: The proof is similar to the proof of Theorem 2.4.  

Definition 3.2: Let function  : [ , ]nf  be a nonsmooth integrable function and , (.)j
ig , 

 , ,...,i m  are the optimal solutions of the functional optimization problem (12), for 

 , , ,..., nj N . We denote the GD of (.)f  with respect to variable qx by (.)q f  and define as 

,( )( )q
j

j i if r w g for  , ,...,i m  and  , ,..., .nj N  

Remark 3.3: Considering Theorem 3.1, if  : [ , ]nf  is a multi-variable smooth function then 

for 
  
( ,..., , ,..., )j j j j j jq q n

s s s s s  , , ,..., nj N  

      
     

 ( ),..., , , ,..., ( ,..., , , ,..., ), ( , ).q j j i j j j j i j j iq q n q q nq

f s s s s s s s s
f

w w w
x

 

Further, if (.)f is a multi-variable nonsmooth integrable function, then the GD of (.)f  with respect 

to qx  is an approximation for partial differentiation of (.)f  with respect to qx .  

Here, as in Section 2, we approximate the optimization problem (12) for  , ,..., nj N  with 

a LP problem. For this, let   be a given small number. Choose arbitrary points ( , )i
i i

w
m m


 

for  , ,...,i m  and suppose that ( ) ( ) ( ) ( )f f
ij j j i i it h t h w t w g  for all [ , ]i it w w . 

Moreover, for  , ,..., nj N and  , ,...,i m , we define 

( ),f f
ij j ih h w


( ),f f

ij j ih h w


( ),f f
ij j ih h w  

    
, , ( ), ( ).i i i i ij ij i ij ij it w t w w w

 
 Now, following Section 2, we can approximate the optimization problem (12) by an LP problem 

with the decision variables ijk  and ig  for   ,..., , ,i m k  , as follows: 

                                         ( )

( )

( , ,..., ) , ,..., , , .

m

ij ij
i

f f
ijk ik i i ijk ij

f f
ijk ik i i ijk ij

m

Minimize

subject to t w g h h

t w g h h

g g g i m k

 


 
  

                            (13) 

Note that if , , ,...,j
ig i m  are the optimal solutions of LP problems (13) for 

 , ,..., nj N , then  

  

,( ),..., , , ,...,q
j

j j i j j iq q n
f s s s sw g  for ,...,i m .  Moreover, in LP problems (10) and (13), we 

can assume that m , in other words, we can suppose that the variables ig  for  , ,...,i m are 

free variables. 

 

4. Simulation results 
Here, we obtain the GD of some nonsmooth functions. The LP problems (10) and (13) are solved 

by revised simplex method and LINPROG function in MATLAB software. 
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4.1. Obtaining the GD of some nonsmooth one-variable functions 

For solving problem (10), in the examples of this subsection, we assume that  

1 1, 1, 1. , , . , . . , ,..., .i i i i im s i x s x s i
 

            

Note that for all m  , in the following examples, we don’t see tangible change in the GD of 

nonsmooth functions. 

Example 4.1.1: Consider the nonsmooth continuous function  
 


( )f x x x on the interval 

( , )  . This function is illustrated in Figure 1. It is obvious that the nonsmoothness points of this 

function are .x    and .x   . By solving the corresponding problem (10) for this function, 

we obtain the optimal solutions ( )i if s g  and ij  for  , ,...,i     and , .j    Figure 2 shows 

the resulting GD, i.e. (.)f . 

    
                Fig. 1: The graph of function (.)f for Ex. 4.1.1.                       Fig. 2: The graph of (.)f for Ex. 4.1.1. 

Example 4.1.2: Consider the nonsmooth continuous function  ( ) sin( )cos( )f x x x  on the 

interval ( , )  . It is differentiable on (0,1) except at the points in the set 

   : sin( ) or cos( )x x x . In Figure 3, we show this function on interval (0,1) which it is 

continuous but not differentiable. We solve the problems (10) corresponding to this function and 

gain the optimal solutions ( )i if s g  and ij  for  , ,...,i     and , .j    Figure 4 shows the 

graph of the computed GD of function (.)f . 

 
             Fig. 3: The graph of function (.)f for Ex. 4.1.2.                   Fig. 4: The graph of (.)f for Ex. 4.1.2. 
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Example 4.1.3: Consider the following functions  
. .

( ) . , ( ) . , ( ) . , ( ) sign( . ) .f x x f x x f x x f x x x
   

   
              

on [ , ]x   . We obtain the GD of these functions using the LP problem (10) on the interval [ , ]  and 

compare it with proximal subdifferential, strict subdifferential, and limiting subdifferential at point 

.x   (see page 135 of Vinter [19]). Table 1 shows the obtained results. Note that by attention to 

Table 1, our GD is better than the above-mentioned subdifferentials, since it has a specific numeric 

value (corresponding to the definition of GD) and it is not an empty or infinite set.   

Table 1: Comparison of the GD with the subdifferentials of functions (.), , , ,if i     at point .x   for Ex. 4.1.3. 

                                                                                        (.)f


                  (.)f


               (.)f


                 (.)f


 

                              Proximal subdifferential                 [ , ]                                     ( , )                

                                Strict subdifferential                     [ , ]                                     ( , )                

                              Limiting subdifferential                  [ , ]                { , }             ( , )                 

                         GD for 1.  and m                                                      .   

                        GD for 2.   and m                                                        .   

                         GD for 1.   and m                                                       .     

                       GD for 05.   and m                                                    .     

4.2. Obtaining the GD of some multi-variable nonsmooth functions 

In this subsection, we find the GD of some nonsmooth functions ( , ), ( , ) ( , )f f x x x x 
   

   

with respect to x

(namely (.,.)f


) in some examples using LP problem (13). We assume N   

and devide ( , )   to the similar grids , , ,...,j j N   and select points j js  as 

. . ( ), , ,...,js j j N       . Moreover, we suppose  

1, m=99, w w 1 w 1. . , . , .i i i i ii t t
 

        , , ,...,i    . 

Indeed, we set ( ) ( , )j jr t t s   for , ,...,j N  and ( , )t    .  

Example 4.2.1: Consider the function ( , ) . .f x x x x x
    

    on ( , ) ( , )x x 
 

  which is 

a nonsmooth function in the points of the set {( , ) ( , ) : . or . }.x x x x
   

       This function 

is graphed in Figure 5. The GD of this function with respect to x

 i.e. (.,.)f


, is found Using the LP 

problem (13). The graphed of (.,.)f


is shown in Figure 6.   

   
         Fig. 5: The graph of function (.,.)f for Ex. 4.2.1.                       Fig. 6: The graph of (.,.)f


for Ex. 4.2.1. 
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Example 4.2.2: Consider the function 
    

 ( , ) sin( ) cos( )f x x x x x on ( , ) ( , )x x 
 

  . Its 

graph is shown this function in Figure 7. Observe that this is nonsmooth in points of the set 

{( , ) ( , ) : sin( ) or cos( ) }x x x x
   

      . The LP problem (13) is used to obtain the GD of 

this function with respect tox

, i.e. (.,.)f


. It is graphed in Figure 8. 

   
         Fig. 7: The graph of function (.,.)f for Ex. 4.2.2.                         Fig. 8: The graph of (.,.)f


for Ex. 4.2.2. 

5. Conclusions and suggestions 

In this paper, we defined a new practical GD for multi-variable nonsmooth functions as the 

optimal    solution of an optimization problem on an interval. We solved the optimization problem, 

which corresponds to the original nonsmooth function, by using discretization method where finally 

is converted to an LP problem. This GD for smooth functions coincides with the exact 

differentiations of these functions and for nonsmooth functions it is an approximation for 

differentiations. Four advantages of our GD with respect to the other approaches are as follows: 

I. The GD of a nonsmooth function by our approach does not depend on the nonsmoothness points 

of function. Thus we can use this GD for many cases that we do not know the points of non-

differentiability of the function. 

II. The GD of nonsmooth functions by our approach gives a good global approximate derivative as 

on the domain of functions, whereas in the other approach the GD is calculated at one given 

point. 

III. The GD by our approach is defined for nonsmooth integrable functions, whereas the other 

approaches is defined usually for locally Lipschiptz or convex functions. 

IV. The GD in our approach is obtained by solving an LP problem, whereas the other approaches 

for GD, are based on lim, liminf and limsup (see chapter 1 of Jeyakumar [12]) and calculating 

the GD is very hard and usually is not possible. 

We suggest that the GD of this paper can be used to approximate the optimal solutions of 

nonsmooth discrete and continuous-time optimization problems, practically and applicably. 

Moreover, we can apply this GD to approximate the solutions of nonsmooth algebraic systems.  
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